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In this communication, we report experimental evidence for the
existence of synthetic catalytic pores (SCPs, Figure 1).1,2 Substrate
conversion during substrate translocation through a membrane-
spanning SCPs has captivated our attention since the discovery of
synthetic multifunctional pores (SMPs)1 with esterase and ion
channel activity.2aThe scenario of substrate-loaded vesicles “spitting
out” products formed on the way through an SCP was particularly
attractive because it suggested that the rate of substrate binding
(kon) and substrate and/or product release (koff) may be manipulated
with, e.g., concentration gradients or membrane potentials.

To implement conditions appropriate to test this hypothesis, large
unilamellar vesicles composed of egg yolk phosphatidylcholine
(EYPC LUVs) were loaded with 8-acetoxypyrene-1,3,6-trisulfonate
(AcPTS) as model substrate of choice.2a-e With the obtained EYPC-
LUVs⊃AcPTS,3,4 trans esterolysis5 was initiated by extravesicular
addition ofSCP1, a rigid-rodâ-barrel with internal arginine-histidine
dyads that forms highly stable, multifunctional ion channels.6,7

Product formation after pore addition (Figure 2A, ii) was monitored
continuously by following the increase in emission of product with
time (Figure 2A, b).2a,8,9Nonlinear dependence of the initial velocity
of product formation on substrate concentration (Figure 2B,O)
provided kinetic data for trans esterolysis in unpolarized spherical
membranes (Table 1, entry 1).

Vesicle polarization was achieved by means of a potassium
diffusion potential as described previously, and verified by an
increase in emission of potential-sensitive Safranin O (Figure 2A,
c, v).10,11 Taking advantage of differences in the pH profiles of

esterolysis (maximal at 5< pH < 6), and pore formation (maximal
at pH< 5) bySCP1,2a,c,12it was possible to perform trans esterolysis
in polarized membranes. The application of membrane potentials
E ≈ -50 mV13 resulted in an increase ofVmax beyond experimental
error (+30%) together with an eventual minor increase ofKM

(+15%, Table 1, entry 2 versus entry 1).14

One possible explanation of these changes is that inside-negative
potentials guide internal, anionic substrates into theSCP1 and the
anionic products into the external media.15 Assuming a Briggs-
Haldane mechanism,16 factors fon ) kon

-50mV/kon
0mV and foff )

koff
-50mV/koff

0mV could be calculated (Table 1, entry 2).3 The obtained
values supported acceleration of substrate/product binding/release
(i.e., foff g fon g 1) by constructive electrostatic steering in trans
catalysis, withfoff > 1 as key factor beyond experimental error.17

The key observation in control experiments with cis esterolysis3

was the absence of comparably strong changes upon polarization.
This difference supported validity of the changes seen with trans
esterolysis.5,18Within experimental error,V0 decreased only slightly
becauseKM (+33%) increased more thanVmax (+5%, Table 1, entry
4 versus entry 3). Hindered substrate binding by interfering
electrostatic steering was one possible explanation for these less
relevant changes (fon ) 0.78, Table 1, entry 4).19,15 These
complementary trends with cis and trans esterolysis in polarized
membranes hinted at the attractive scope of a novel approach toward

Figure 1. Trans catalysis in polarized membranes. The influence of inside-
negative Nernst potentials (red) on the conversion of intravesicular anionic
substrates (AcPTS) by externally addedSCP1 into anionic products (HPTS)
is assessed.SCP1

6/SMP1
2a-e in lipid bilayers (EYPC) are depicted in blue

(hydrophilic), gold (hydrophobic), and black (rigid-rod andâ-sheet scaffold),
R-amino acid residues pointing exterior of the barrel are black on white,
internal ones white on blue (single-letter abbreviations: L, Leu; H, His; R,
Arg; V, valinomycin).

Figure 2. (A) Increase of product concentration with time after addition
of (i) valinomycin and (ii) SCP1 to EYPC-LUVs⊃AcPTS at (a)E ≈ -50
mV and (b)E ) 0 mV;8 (c) membrane polarization during experiment a;11

(iii -v): see text.9,13 (B) Initial velocity of product formation as a function
of substrate concentration atE ) 0 mV (O) andE ≈ -50 mV (b) with
curve fit.

Table 1. Kinetic Data for Esterolysis of AcPTS by SCP1

entry cond.a E (mV)b KM (µM)c Vmax (pM/s)c fon
d foff

e

1 trans 0 4.1( 0.7 170( 16g

2 trans -50 4.7( 1.0 222( 26g 1.10 1.30h

3 cis 0 6.1( 0.9f 202( 16f

4 cis -50 8.1( 1.9 213( 28 0.78 1.05

a Conditions: see text.3-5,8 b Membrane potential.c Michaelis constant
and maximal velocity calculated by fitting the experimental data toV0 )
(Vmax x cAcPTS,total)/(KM + cAcPTS,total). d fon ) foff KM

0 mV/KM
-50 mV. e foff )

Vmax
-50 mV/Vmax

0 mV. f See ref 18.g Key data concerning the impact of
polarization on trans catalysis.h Key data concerning eventual electrostatic
steering (error( 0.19).15
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vectorial control of catalysis and, most importantly, corroborated
the existence of catalytic pores.
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pore
kcat

[min-1]
KM

b

[µM] (kcat/KM)/kMeIm
c kcat/kuncat

d

(kcat/KM)/kuncat
d,e

[M-1]

SMP1 0.13f 0.7f 9.6× 105 f 5.0× 103 7.1× 109

SCP1 0.24 6.1 2.0× 105 9.2× 103 1.5× 109

a Conditions, see refs 2a, 3, and 8.b ∆∆GES
0 ) ∆GES

0 (SCP1) (-29.6
kJ/mol)- ∆GES

0 (SMP1) (-35.0 kJ/mol)) +5.4 kJ/mol [assuming
KM ) KD(substrate)].c Catalysis by 4(5)-methylimidazole:kMeIm )
0.0032 M-1 s-1.2a d Autohydrolysis: kuncat ) 4.34 × 10-7 s-1 (pH
5.5). e ∆∆GTS

0 ) ∆GTS° (SCP1) (-52.2 kJ/mol)- ∆GTS
0 (SMP1)

(-56.0 kJ/mol)) +3.8 kJ/mol.f Data from 2a.
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